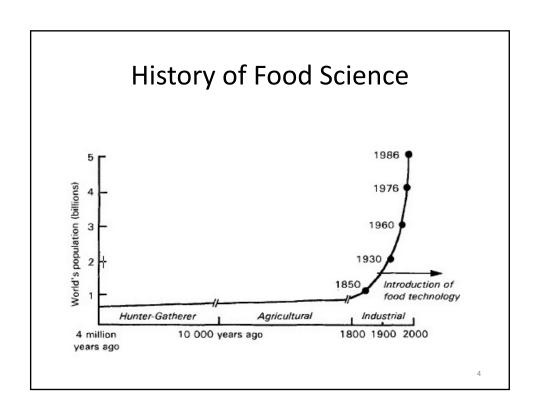
The Role of the Food Technologist in Assuring Better, Safer and Healthier Food for All


Daryl Lund Emeritus Professor Univ Wisconsin-Madison Editor in Chief IFT Peer-Reviewed Journals President, Int'l Academy of Food Sci and Tech

Outline

- History of Food Processing/Technology
 - Current Situation
 - What is on the Horizon

Food Technologist

One who works with food using Food Chemistry Food Biology Food Engineering

- Fiber crates
- Cellulose packaging
- Gable-top, waxed milk cartons
 - Sliced bread
 - Jell-O
- Regulations e.g. Food, Drug, and Cosmetic Act

5

1940s

- Automation
- Mass production
 - Frozen foods
- Vending machines

- Frozen dinners
- Foreign foods
- Food for bomb shelters
- Frozen, ready-to-eat bakery goods
 - Targeted markets
- Controlled-atmosphere packaging

7

1960s

- Diet foods
- Process control computers
 - Clean-in-place
 - Aseptic canning
 - Drying improvements

- Energy efficiency
- Water/waste utilization
- Membrane processing
- Health/organic foods
- Environmentally robust computers

9

1980s

- Dechemicalization
 - Automation
- Aseptic processing
 - Irradiation
 - Packaging

- Intelligent Packaging
 - Low Carb
 - Sachet Packaging
- High Pressure Processing
 - Functional Foods

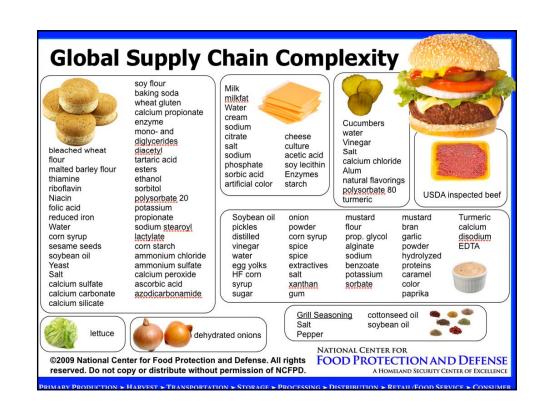
11

2000s

- RFID
- Nanoscale Engineering and Technology
 - Packaging
 - Non-thermal Processes
 - Fresh-Like
 - Chef-Like

Agriculture's Paradigm Shift

FROM:


- Cheap
- Abundant
- Available

TO:

- Safe
- Wholesome
- Nutritious

Vinegar Argentina Australia Austria Belgium Brazil Canada China Chile

Colombia Denmark Dom. Rep France Germany Greece Hong Kong

Israel

Italy

Japan S. Korea Lebanon Peru

Spain

Sweden

Turkey

Taiwan

U.K.

Poland Portugal Serbia Philippines Japan Russia Mexico S. Africa Singapore

Garlic Powder Brazil

Canada China Germany India Israel S. Korea

Tomatoes Belgium Canada

Colombia Costa Rica Dom. Rep. Guatemala Israel Morocco Mexico Netherlands New Zealand Poland

Spain

Beef Australia Canada Chile Costa Rica Honduras

Japan Mexico Nicaragua New Zealand Uruguay

NATIONAL CENTER FOR

Wheat Gluten

Australia Belgium Canada China Czech Rep. France Germany Kazakhstan Lithuania Netherlands

Poland Russia Switzerland Thailand U.K.

©2009 National Center for Food Protection and Defense. All rights reserved. Do not copy or distribute without permission of NCFPD.

FOOD PROTECTION AND DEFENSE

Need for New Technologies

- Maintaining/improving food safety
 - Maintaining freshness
- Maintaining/improving sensory quality
 - Maintaining/improving shelf-life
 - Improved functionality
 - Improved production/processing

(Adapted from Jason Wan, Food Science Australia, 2007)

"Omic" Technologies

- DNA = genomics
- RNA = transcriptomics
- Protein = proteomics
- Metabolites = metabolomics
 - nutrition = nutrigenomics
 - Molecular gastronomics
 - Cash = economics

Objective of Nutrigenomics

Prevent and potentially treat disease

through *targeted nutrition*

Nutrigenomics: The Promise

- ■Personalized medical treatments
- ■Personalized nutritional advice
- Healthier processed foods targeted to individuals

Nancy Fogg-Johnson and Jim Kaput, Food Technology August 2007

"Ologies"

- Biology
- Food technology
 - Biotechnology
 - Nanotechology
 - Culinology

Culinology

Culinology = <u>Culin</u>ary Science + Food Techn<u>ology</u>

Term coined by Winston Riley, former President and Founder Research Chefs Association (RCA)

OBJECTIVE

Ability to efficiently and economically manufacture restaurant-quality "convenience foods" that look and taste like food served in a restaurant

CHEF-LIKE FOODS

Molecular Gastronomy

Term invented by Hungarian Physicist

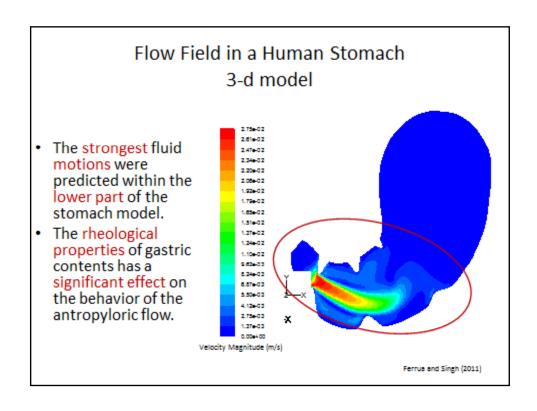
Nicolas Kurti
in a 1969 presentation to the Royal Institution
entitled:

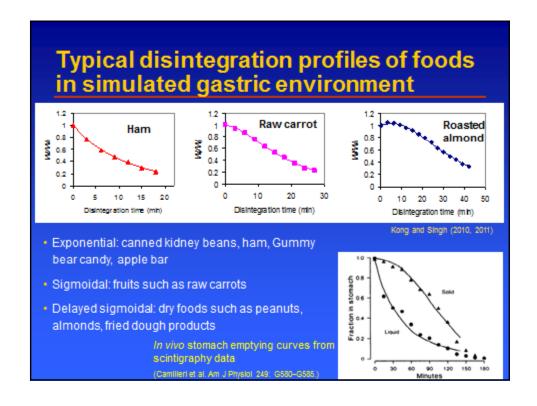
"The Physicist in the Kitchen"

Further popularized by Herve This

Molecular Gastronomics

Application of scientific principles to


understanding and improvement of small


scale food preparation

Food Process Technologies Research Needs for Health/Wellness

- Separation processes for extracting health- functional ingredients from natural food materials (e.g. antioxidants, pigments etc)
- Reaction engineering for synthesizing functional food ingredients (Oligomers etc) and quantifying the influence of environment on reaction kinetics
 - Modeling the post-consumption fate of food (GUT modeling!)

From Niranjan 2008

Biopharming:

- Use plants that are geneticallyengineered to produce pharmaceuticals or other bioactive ingredients
- Alfalfa, corn, potato, rice, safflower, soybeans, tobacco.

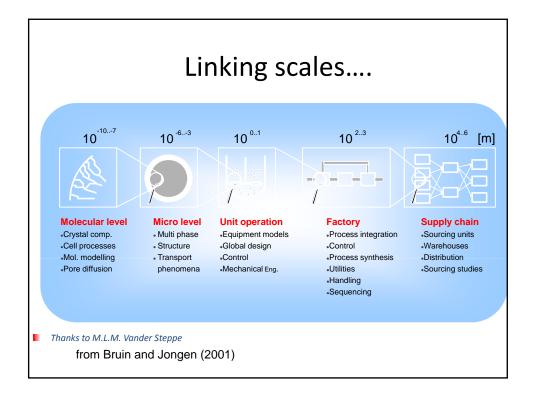
Bioguided Processing

Using mechanistic understanding of biology to guide processing biomaterials for specific structure and/or functions as foods.

Processing Technologies for Extending Shelflife, Improving Nutrient Availability, Change Sensory Quality

Traditional

- Canning
- Drying
- Freezing
- Fermenting
 - Packaging


Newer Processing Technologies

(or not used extensively)

- Irradiation
- High Pressure
 - Ultrasonics
- High intensity light
 - Nanotechnology
- Pulsed electric fields
 - Plasma discharge

The Horizon

Moving from the macroscopic to the microscopic to the nanoscopic

Nanotechnology in Foods

- food ingredients that are processed or created to form nanostructures,
 - additives of encapsulated or engineered nanoscale particles used in food,
 - nanoscale materials that have been incorporated to develop new food packaging, and
- nanoscale technology-based devices and materials used in applications such as, filtration ('nanofiltration'), water treatment, and sensors for food safety and traceability.

Chaudry and Others. 2008. Food Additives and Contaminants, 25(3):241–258.

Engineering and Food Safety

- Defining the role of food engineering in safety of foods.
- "Food safety engineering is an emerging specialization that involves the application of engineering principles to address microbial and chemical safety challenges" [Balasubramaniam VM (2006)]

Food Safety Engineering

Predictive Microbiology
 Predictive Mathematical and
 Probabilistic Models
 Databases and Computer Programs

from Lopez-Gomez, et al (2009)

Food Safety Engineering

Advanced Food Contaminants Detection Methods

> Rapid Detection Tools Parameter Integrators

from Lopez-Gomez, et al (2009)

Food Safety Engineering

- Develop methods for measuring materials in foods is absolutely of paramount importance.
 - Speed and accuracy are prerequisites of the instruments since public health is dependent on the outcome.

BOTTOM LINE

 The food industry and regulatory agencies must jointly define needs!!

Food Safety Direction

Replace analytical capability with the Food Safety Objective Concept, which determines what level of public health protection is acceptable, rather than ability to detect.

39

Sustainability Engineering

- Need for comprehensive analysis
- Entire food system from production to consumption
- Include all aspects of sustainability energy, water, wastes and carbon footprint
- Lifecycle Assessment
- Engineering emphasis on quantitative analysis

Research Directions Beyond 2012

- Diet, Food and Health Connection:
- understanding the relationship between what we eat and acute and chronic disease
- Molecular Mechanisms of Reaction: understanding at the molecular level the reactions that are important (pertaining to health, well-being, food deterioration, etc.)
 - Nutraceuticals/Functional Foods:

enhancing health through ingestion of chemicals that have biological and physiological function

Human body absorption:

Absorption of food constituents in the human body

Research Directions Beyond 2012

Real-Time Analysis:

on-line, real time analytical procedures for detecting chemical and biological agents causing health risk and/or contributing to health and wellness

Food Preservation Optimization:

continued improvements in traditional preservation technologies for increased quality shelf-life and safety of foods

Research Directions Beyond 2012

- Non-Traditional Processes introduction of newer technologies such as irradiation, high pressure, high intensity light, pulsed electric fields, ultrasound, and ohmic heating
- Sensory Analysis/Consumer Perception increased understanding of stimuli and methods of measuring responses of sensory organs and integrated perceptions of food

43

Research Directions Beyond 2012

- **Nanotechnology** ability to manipulate atoms and single molecules to produce desired effects.
- Atomic Structures understanding structures at the atomic level including food systems and packaging
- Food Safety increased understanding of the cause of food intoxication and contamination that increase health risk

What are the new research directions and challenges?

Contribute to the goals of nutrition, health and wellness

Accomplish food manufacturing under the constraints of sustainability and consumer safety

Advice

- Follow Nutrigenomics
 - Follow culinology
- Follow nanotechnology

These "omics" and "ologies" will have significant impact on the future of food science and food!!!

Food in the Future

Today's global issues will remain

- Food Security
- Water & Other Natural Resources
- Health and Wellness
- Global Food Supply Chain
 - Intricacies
 - Regulatory Harmonization
- Food Safety
- Sustainability of Food Systems

Thank you!